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The energy balance in modulated plane Poiseuille flow 
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(Received 15 June 1972) 

Plane Poiseuille flow in which the pressure gradient has a small amplitude 
time-periodic component in addition to a constant component is considered. 
The velocity field close to the boundaries, arising from a small amplitude high 
frequency disturbance to the flow, is calculated to second order in the modulation 
amplitude. The energy-transfer integral for the disturbance is then calculated 
to the same order. It is found that, if the thickness of the disturbance shear wave 
relative to that of the modulation shear wave is greater than Q, the modulation 
inhibits energy transfer into the disturbance and so stabilizes the flow. 

1. Introduction 
The experimental study by Donnelly (1964) of the stability of modulated 

Couette flow stimulated several attempts to reproduce his results theoreticaIly 
(Venezian 1969; Rosenblat & Herbert 1970; Rosenblat & Tanaka 1971). There 
have also been theoretical studies of the effects of modulation on the linear 
stability of other flows (see, for example, Grosch & Salwen 1968). 

The results of these analyses reveal that, in the problems considered, modula- 
tion has a stabilizing effect. The degree of this stabilization initially increases and 
then decreases as the modulation frequency is increased from zero. Thus, an 
optimum frequency exists at which the enhancement of stability by modulation 
is a maximum. This feature is also present in Donnelly’s results. 

An attempt to  gain some understanding of the mechanism of this stabilization 
appears to have been made only by Grosch & Salwen (1968) in their study of 
modulated plane Poiseuille flow. I n  this work the pressure gradient has constant 
and time-periodic components. Grosch & Salwen found that the flow is most 
stabilized when the shear waves associated with the modulation and the dis- 
turbance are of comparable thickness. They suggested that these shear waves 
interact to inhibit the transfer of energy from the base flow to the disturbance 
and so stabilize the flow. To verify this, they attempted to extend Lin’s (1954) 
work on unmodulated parallel flows to cover modulated plane Poiseuille flow. 

Lin considered high-frequency disturbances to parallel flows and determined 
the distribution of Reynolds stress within the resulting wall Stokes layers. He 
found that, in these flow regions, the Reynolds stress 70 is such as to transfer 
energy from the base flow into the disturbance and so destabilize the flow. 
Grosch & Salwen calculated the Reynolds stress in the wall Stokes layers of the 
modulated flow in the form 7 = T~ + ~ 2 7 ~  + O ( E ~ ) ,  where e is the amplitude of the 
modulation. No details of these calculations are given. 



74 D. M .  Herbert 

From the energy equation governing a disturbance to a time-dependent flow, 
it is evident that energy transfer in modulated parallel flow arises from an inter- 
action between the time-dependent base flow and the disturbance. It follows that 
a calculation of the Reynolds stress as given by Grosch & Salwen, in which the 
time dependence of the base flow is ignored, is not appropriate in a discussion 
of the energy balance in modulated parallel flows. 

Under the same approximations as those used by Lin, the energy transfer 
integral is calculated to second order in e. It is found that a sufficient condition 
for the modulation to  be stabilizing is that S/S, 2 $, where 8, and Sare the thick- 
nesses of the modulation and disturbance shear waves. 

2. The base flow 
The two-dimensional flow of an incompressible viscous fluid between two 

infinite horizontal boundaries is considered. Cartesian co-ordinates (2, y) are 
used with origin in the lower boundary and x > 0 in the flow direction. 

The flow is driven by a pressure gradient 

where p and v are the density and kinematic viscosity of the fluid, 0 is the maxi- 
mum velocity of the unmodulated flow, 1 is the distance between the horizontal 
boundaries, e’ is the non-dimensional amplitude of the modulation, w, is the 
frequency of the modulation and t is the time. 

The equation for the velocity U(y, t )  of the base flow is 

au lap a w  
at pax  a y 2  

- +u- _ -  

and the boundary conditions are U ( 0 , t )  = U(1,t) = 0. The appropriate high- 
frequency solution of this equation is 

where q = y/l and a, = (w,Z2/2v)* 2 1. 
The modulation of the pressure gradient is seen to  produce a uniform velocity 

component exactly out of phase with the modulation together with a shear wave 
which is confined to the Stokes layer adjacent to the boundaries of thickness 

Since a, 9 1, a large modulation pressure amplitude E‘ produces only a small 
effect on the base flow provided that E’ < Qk. However, if e’ = I, an inflexion 
point in the base velocity profile appears a t  y = 0. As we are interested here in 
Tollmien-Schlichting instabilities, we take 6’ < 1 and so e = 

S, = ( 2 v / w m ) k  

< 1. 
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3. The disturbed flow 

in the form of a high-frequency wave. Such a disturbance generates vorticity 
Following Lin (1954), we consider a small amplitude disturbance to the flow 

a x ,  y ,  t )  = (av/ax) - (au/aY), (2) 

which satisfies the linear equation 

ag aw ag 
--v-+ u- = v v y ,  
at a92 ax 

az, azu, az, 

az, a2ul aw,  az, az, 
-- v --v,-+U -+ul- = v v  2z1, at O a92 dy2 O ax ax 

v,--O+u -,+u -2- - vv2z2 ,  ... 

0, 
-- at v ,  -@ + u, = v v 2 z  

az, azu, a2u az az 
at a$ dy2 O ax ax 

v -- -- 

(3) 

O( i)  velocity components 
In the viscous sublayers immediately adjacent to the boundaries the dominant 
process is one of diffusion of vorticity, so that ( 5 )  reduces to 

9z, = 0,  (8) 

a / c a 2  < 1, D/cn, < 1, a6 < 1, (9a) 

where 9 = a/at - v a2/ay2. This reduction is valid provided that 

where a is the wavenumber, 6 = (2v/w)+ the thickness, w the frequency and 
c = @/a the speed of the disturbance shear wave and = 116 = (w12/2v)*. [It 
should be noted that, within thewall Stokes layer, y = O(6,) and so U, = O( U&/Z) 
and not O( a) .] 

We assume now that the modulation and disturbance shear waves are of com- 
parable thickness so that a = O(Qm). As a,+ 1 the conditions (9a) simplify to 

i7/cam < I ,  as< I. (9b) 
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For the least stable mode in unmodulated plane Poiseuille flow, !J is approxi- 
mately 1 O2 in the neighbourhood of the minimum Reynolds number on the neutral 
stability curve. Hence the assumption that Q > 1 for Tollmien-Schlichting in- 
stabilities is well justified. 

Equation (8) has the solution 

z 0 ( x ,  y, t )  = Re [A  ei(az-ot) e-(l-i)S], (10) 

where 6 = y/S = Qzy and A is a complex constant with the dimensions of vorticity. 
The O( 1)  disturbance velocity components are found from the appropriate 

forms of the continuity equation and equation ( 2 )  : 

avo = ZO(X, y ,  t ) .  
au, avo -+- = 0, 
ax ay ax ay 

The solution of these equations which has uo(x, 0, t )  = v,(x, 0, t )  = 0 is 

uo(x, y, t )  = Re [ASei(az-ot'f(<)], vo(x, y, t )  = Re [AaS2 ei(""-@t)g(LJ], (I  I )  

where 

and 

f([) = =&( 1 + i) [ - 1 + e-(l-i)t] 

g(6) = &[ 1 - ( I - i) 6 - e-(l-@ 51. 

O(s)  velocity components 

Under conditions (9), equation (6) reduces to 

awl  az, 9z1 = v,--u - 
a92 1 ax - 

We require not the exact solution of this equation but only the first few terms in 
the expansion of Zl(x, y, t )  in powers of 6 for 5 Q 1. 

After substitution for the terms on the right-hand side of (12), the solution is 
found to be 

Z,(x, y, t )  = Re [Bei(az-wt){eiumt(al + a,(+ O(62)) + e-iOmt (Pl +P26+ o(62)))1, (13) 

where .B = AD/c and 
4L4-L2- 1 L4- 1 +i- 

2L L2 ' a1 = - 

1 
a - -[(4L6+2L5-3L4-L3-LZ-L++) 

2 -  2L2 
+ i(4L6- 2L5- 3L4+ L3- L2 + L + 2 ) ] ,  

i p - -(4L5+2L4+L3-L-2), 

l + i  
p 2 -  2L2 

- 2L2 

(4L6 + 2L5 + 3L4 + L3 - L2 - L - 2 )  ; 

L = S/S, = Q,/Q = (w,/w)* is taken to be of O(1). 
The O ( E )  velocity components (ul, vl) satisfy the equations 



The energy balance in modulated plane Poiseuille flow 77 

The required solution of these equations is 

ul(x,  y ,  t )  = Re [ - B~ei(az-ot){eiwmt(clt+ &a2E2 + O ( t 3 ) )  

vl(x, y ,  t )  = Re [Ba a2 ei(ar-wt){eiwmt (Sia, t2 + iia, t3 + O(t4)) 
+ e-iwmt ( ~ ~ t + i ~ , t 2 + 0 ( t 3 ) ) ~ ,  

+e-iwmt (&t2 1 + iiP2t3 + O(<4:4)))l. 

O(e2) velocity components 
The simplified form of (7) is 

azu, az, L?z2 = v --u -. 
a92 ax 

Hence Z ,  = O(BB/c). We shall show that as a consequence of this the solution of 
(15) is not required. 

4. The energy equation 
The energy equation for modulated plane Poiseuille flow is 

or aqa t  = I ,  - V I ~ ,  

where the integration with respect to x is an average over a wavelength 2n/a 
of the disturbance, that with respect to y is from y = 0 to y = 1, and 

Equation (16) gives the time rate of change of the disturbance energy E in 
terms of a balance between the energy transfer integral I ,  and the viscous dis- 
sipation integral 12. 

We take now 

u(x ,  y ,  t )  = Re [ei(az-"t)a(C, w,t)], v(x,  y ,  t )  = Re [ei(az-ut)O(t, w,t)] (17) 

and 
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where * denotes a complex conjugate. Further, 

+ ( ~ o o ~ ~ o + ~ 2 0 t g o + ~ l l ~ ~ l + ~  v* )- + 0 ( € 3 ) .  (19) 
l2 l2 auO1 aY 

Grosch & Salwen appear to have neglected all but the last two of the O(e2) terms 
in (19) and so have completely ignored the contribution to the energy-transfer 
integral arising from the interaction of the disturbance and the unsteady part 
of the base flow. Further, of the O(e2) terms in (19), the relative magnitude of the 
first four terms with respect t o  the remaining terms is cQ,/o. It follows from 
(9) that, to O(e2),  the energy transfer arising from the interaction of the dis- 
turbance and the steady part of the base flow is negligibly small compared with 
that arising from the interaction involving the unsteady part of the base flow. 

Also, we see now, that, to evaluate the energy-transfer integral to O(e2) ,  we 
require the disturbance vorticity to O(e)  only and so (15) may be discarded. 

From (1)  and (1 1) we have 

au11 2i7 - - [-(i-i)+2L5+0(52)], 
aY JQrn 

au,, 2 0  
- - [ - (I  + i) + 2Lt + 0 ( ( 2 ) ] ,  

aY al 

-- 

u o 0 a  = AS[ - E + +( 1 - i )  P + 0( (3 )1 ,  

u o 0 ( g  = A ~ P  [iip- Q(I + i )  5 3  + 0(54))1. and 

Substitution of these expansions, together with those for the first-order velocity 
components given in (14), into (18) gives 

where 

is the Reynolds stress as found by Lin. Finally, the dissipation integral 

I2 = I I ( < z ) d z d y  = R e ~ ~ ~ ( Z ~ + e 2 ( Z ~ ) + O ( ~ 3 ) ) d z ~ ~ ) .  (21) 

Hence, if L > + the energy transfer from the base flow to the disturbance in 
the wad1 Stokes layer is decreased. As the viscous dissipation of the disturbance 
energy is increased by the presence of modulation, it follows that, within the wall 
Stokes layer, modulation makes the flow more stable. Further, if the principal 
contribution t o  both energy-transfer and dissipation integrals occurs within the 
wall Stokes layer then the condition L z is a sufficient condition for the 
entire flow to be made more stable. 
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FIGURE 1. Distribution of ( a )  Reynolds stress and ( b )  dissipation in unmodulated plane 
Poiseuille flow a t  R = 2 x 104. 

From the numerical results of Thomas (1953) for unmodulated plane Poiseuille 
flow, the distribution of Reynolds stress and dissipation can be found for the 
particular case R = gl/v = 2 x lo4, a1 = 2 and cia = 0.2375- 0.00359i. These 
distributions are shown in figures l ( a )  and (b ) .  The critical point a t  which 
Re [ c /U]  = 1 is a t  y = 0.061. Pigure 1 (b)  reveals that the dissipation occurs almost 
totally within the wall Stokes layer while, from figure I ( a ) ,  it may be seen that 
the energy transfer has a peak very close to  the critical point. As the mean posi- 
tion of the critical point is unchanged by the presence of modulation, we can assert 
that the condition L 2 8 is sufficient for modulated plane Poiseuille flow to be 
more stable than the corresponding unmodulated flow. 

While it is not possible to determine the value of L for which this stabilization 
is greatest, this result is not inconsistent with the suggestion by Grosch & Salwen 
that the maximum stabilization of modulated plane Poiseuille flow occurs when 
the disturbance and modulation shear waves are of comparable thickness. 
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